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Abstract: The problem of determining the pollution load capacity for a river section has an important meaning in protecting 
the water environment for the purpose of sustainable development. This is a complex optimization problem that only has 
an analytic solution in simple cases. This paper presents a method for obtaining an analytical solution for a river section 
in the case of dispersed waste sources distributed along the river, taking into account the influence of decay and dispersion 
processes. The results show a quantitative relationship between the decay coefficient, the dispersion coefficient and the 
load capacity of the river. The obtained results can be applied to more complex real-world problems. 
 
1 Introduction 

 The determination of pollution load capacity in 
river systems plays a crucial role in water quality 
management and sustainable environmental development. 
As the pressures from urbanization, industrialization, and 
agricultural activities increase, rivers are becoming more 
vulnerable to pollution, necessitating effective methods to 
quantify and control pollutant discharge. Regulatory 
approaches such as the Total Maximum Daily Load 
(TMDL) [1,2] framework have been adopted in various 
countries to ensure that pollutant inputs do not exceed the 
assimilative capacity of water bodies, maintaining water 
quality standards for aquatic life and human use [3,4]. 

Analytical and mathematical models have long been 
used to simulate and optimize pollutant transport and 
transformation in riverine systems. These models account 
for critical processes such as advection, dispersion, and 
degradation [5,6]. However, many optimization problems 
regarding load capacity lack general analytical solutions 
and often require numerical approaches, especially when 
dealing with spatially distributed pollution sources [7,8]. 
Despite this complexity, analytical solutions—where 
obtainable—provide valuable insight and computational 
efficiency for water quality planning. 

Previous studies have provided guidance and technical 
frameworks for implementing pollution control strategies, 
including Japan’s Total Pollutant Load Control System 
(TPLCS), and comprehensive TMDL reports from states 
such as Maryland, USA [9-11]. These efforts highlight the 
importance of incorporating hydrodynamic and 
biochemical processes into load estimation and 
management decisions. 

This paper presents an analytical solution for 
optimizing the pollution load capacity of a river segment 
with distributed waste sources. The model incorporates the 
effects of pollutant decay and dispersion, enabling a more 
accurate estimation of load capacities under constrained 
environmental conditions. By deriving closed-form 
solutions under specific assumptions, the study contributes 
a novel theoretical framework that can support more 
effective and efficient pollutant management strategies in 

river systems. The findings also provide a foundation for 
extending these methods to more complex scenarios and 
integrating them into practical water quality control 
programs. 

 
2 Materials and methods 
2.1 Problem 

In order to solve the problem analytically, we selected 
a 1D model with a river segment of length L, cross-section 
A, and a constant discharge Q. Concentration of influent 
waste in the river section is c0, the reduction coefficient is 
 λ (including decomposition and deposition). Discharge 
load distribution on both sides of the river is ρ(x). Find ρ(x) 
such that the total load on both sides of the river into the 
river is the maximum. The constrain conditions are as 
follows: 

(1)  Concentration of pollutants in the river section 
does not exceed the allowable standard Cmax 

(2)  Density of discharge load in the river does not 
exceed the limit ρmax  

 
2.2 Mathematical model 

The river segment is shown on the x coordinate axis 
from coordinates a, b (section L= [a,b]). In the case of 
constant flow rate Q, the problem considered is stationary. 

The distribution of pollutant concentrations is 
determined by the following differential equation: 

 

 � ��
�� � � ���

��� � 	
 � �
��                 (1) 

 
Where c(x) [mg/L] pollutant concentration; v=Q/A 

[m/s] average flow velocity; α [m2/s] eddy diffusion 
coefficient; λ [1/s] the degradation coefficient of the 
pollutant; ρ(x) [mg/L.s] discharge rate density along the 
river. 

Constrain conditions: 
(1) 0<c(x)<cmax   ; x ∈ [a,b] 
(2) 0<ρ(x)<ρmax ; x ∈ [a,b] 
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Boundary conditions (given the input concentration of 
the river section): 

(1) c(a)=c0   (taking into account the concentration of 
pollutants from upstream) 

Determining the total load of the river section is 
objective function:  

Find ρ(x) with x ∈ [a,b] to      �� � � �
������    max. 
Then the load capacity (LC) of the river section 

(including upstream load) is 
 

 �� � � �
������ � 
��               (2) 
 
also reached its maximum. 
For the convenience of finding analytical solutions, the 

above equations are reduced to dimensionless form, with 
dimensionless variables as follows: 

 �� � 
����
� ;      
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�����
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��              (3) 

 
Equation 2 (2) is rewritten by substituting Equation 3 

(3) into equation 2: 
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Divide both sides by vL, remove the "~" sign of the 

variables, we get: 
 ��
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With the boundary condition: 

c(x=0) =0. 
The objective function becomes: 

�� � + #
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� �
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� � �	
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The objective function becomes finding maximum of 
R(x) where x belongs to the following interval [0,1] for the 
integral (5): 

 

 � (
����,�                               (5) 
 
With the conditions (6): 
 
 (� ) (
�� ) (%��                 (6) 
 
And with c(x) being the solution of the differential 

equation (7):  

 
��
�� � & ���

��� � Λ
 � (
��                   (7) 

 
Satisfy the boundary conditions (8): 
 
 c(x=0)=0                            (8) 
 
then (9): 
 �
̃� ) 

�� ) 1                      (9) 
 

3 Results 
3.1 Results of determination of waste source 

distribution in case A=0 
In the absence of the influence of dispersion processes 

(molecular diffusion and turbulent diffusion) 
corresponding to A=0, equation (7) is rewritten as: 
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�� � �Λ
 � (
��                        (10) 

 
This equation with condition (5) has a unique solution: 
 



�� � -�.� + (
/�-.0�/�
�  

 
When Rmax is very small, c(x) may not reach cmax=1 in 

[0,1], in this case, in order to maximum the integral, we set 
R(x)=Rmax over the whole interval [0,1]. We have: 

 



�� � -�.� + (
/�-.0�/�
� ) (%��
1 � -�.��/Λ 

 
At x = 1, the right-hand side  is only maximized and the 

value of c(x) = 1. 
Therefore, the critical value Rc of Rmax is determined 

by: (�21 � -�.3Λ � 1   → (� � Λ
1 � -�.�  
 
From here there is always the inequality Rc>Λ. 
With  Rmax≤Rc  
We have:     R(x)=Rmax    with 0≤x≤1. 
and     
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�  

or 
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1 � -�.��/Λ                  (11) 
so: 
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Thus, the total load of the river will be: 
 �� � �

%�� � 
��(%�� � �	
� 
 
The total load capacity of the river section will be: 
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�� � �

%�� � 
��(%�� � �	
� � 
�� 
In this case  Rmax>Rc,   
 
We have: 
 

 � (
���� � � 5��
�� � Λ
6 �� � 

1� �,�,�Λ � 

����,�     (12) 

 
So the solution where c(1)=1 and the integral c(x) over 

[0,1] is maximized will be the optimal solution. This 
integral is maximal when c(x) soon reaches its maximum 
value. So the function R(x) needs to have the maximum 
value from the point x=0, that is, R=Rmax in the interval 
[0,x0] so that at x0=1, c(x)=1 we have (13): 

 

 1 � 7 !"2,�89:"�3
.   → �� � � ,. ln 
1 � .7 !"�           (13) 

 
On the segment [x0,1] to maximize the integral (10), we 

need to maintain c(x)=1, which means dc/dx=0. From 
equation 10 we have R=Λ because R>Rc>Λ. 

So with R>Rc we have: 
R=Rmax with 0≤x<x0 
R=Λ với x0≤x≤1. 
So: 
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Thus, the total load will be: �� � �

%�� � 
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�(14) 

The total load capacity of the river section will be: 
�� � �

%�� � 
�� >Λ � 51 � 7 !". 6 ln 51 � .

7 !"6? � �	
� � 
�� (15) 
 

3.2 Results of determination of waste source 
distribution in case A≠≠≠≠ 0 

In the case, the influence of the dispersion process 
(molecular diffusion and turbulent diffusion) are 
considered in equation 4, we have A≠0. 

Similar to the case A=0, there exists a value of Rc so 
that when Rmax<Rc, the concentration value c(x) does not 
exceed the value 1. So: 

a. With Rmax<Rc  
We have  
R=Rmax 
General solution of the equation: �
�� � & �$
��$ � Λ
 � (
�� 
satisfy the boundary conditions: 

c(x=0) = 0 
With 0<=x<=1 have the form:  
 

�� � �,-@A� � �$-@�� � (BC�/Λ  (16) 

Where: 	,,$ � ,E√,GHI.
$I , with λ1<0<λ2; C1, C2 are the 

coefficient which are obtained from boundary conditions 
below: 

- At x=0: c(x=0)=0 
- At x=1: c(x) and its derivative satisfy the continuity 

condition with d(x) is the solution of equation (7) with 
R=0, in the interval [1,+∞) 

- At x=+∞, d(x) is limited, so d(x) has a general solution 
of �
�� � J,-@A� 

From the above boundary conditions, we have a  linear 
system equations for the coefficients C1, C2 and D1 
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Solving the equations (17), we have: 
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Substitute the coefficients in (15), since c(x) increases 

in the interval (0,1) thus reaching a maximum at 1 and Rc 
is found from the condition c(1)=1. We have: 
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b. Rmax>Rc: � (
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with c(0)=0 and   
��
�� 
1� � 	,

1�  we have: 
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The above integral reaches its maximum when there 

exists a condition for all three terms to simultaneously 
attain their maxima. The first term reaches its maximum 
when 
(�) increases as rapidly as possible to 1 and 
maintains the value 1 until �=1. This condition is entirely 
consistent with the conditions for the second and third 
terms to also reach their maxima, with c(1) =1 (since λ2<0 

we have 1- λ2A>0) and 
��
��  attaining its maximum. The 

optimization problem is thus reduced to the following 
problem: 

Determine x0 such that c(x) increases as rapidly as 
possible to 1 on the interval [0,x0), and then, c(x) reaches 
its maximum value c(x)=1 (from x0 to 1). To make c(x) 
increase as rapidly as possible, we set R=Rmax. For 

c(x)=const=1, we have 
��
�� � 0 and 

���
��� � 0, then from 
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equation 4 deduce R=Λ. The problem now is determining 
x0. 

In the interval [0,x0] the solution has the form (since 
R(x)=const=Rmax): 

 
 

�� � �,-@A� � �$-@�� � (BC�/Λ   (24) 

 
With the condition c(0)=0; c(x0)=1 and dc/dx(x0)=0, 

we obtain a system equations to find C1,C2 and x0: 
 

 

⎩⎨
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    (25) 

 
Solving the system equations with the condition 

x0∈[0,1], we get the values of the constants C1,C2 and x0. 
The total load of the river will be: 
 

 �� � � #
���� ��� �

%�� � 
�� � (
����,� � �	
� (26) 

in which  

+ (
����,
� � ��(BC� � 
1 � ���Λ 

 
The load capacity of the river section including the load 

from upstream will be: 
 

 �� � �

%�� � 
��Q��(BC� � 
1 � ���ΛS � �	
� � 
��  (27) 
 

4 Applies to specific river sections 
Consider the river section with the following 

characteristics (Figure 1): 
• Length L=1000 (m) 
• Discharge Q=200 m3/s 
• Cross-section As=300 m2 
• Velocity v=Q/As=0.67 (m/s) 
• Pollutants c (eg BOD, COD): affected by 

degradation and dispersion 
• Decomposition coefficient (decay, 

deposition...): λ=0.2/day 
• Partition coefficient (molecular and turbulent 

diffusion): α= 1 (m2/s) 
• Concentration of C at upstream inlet: c0=4 

mg/L 
• Permissible concentration: cmax=15 mg/L 
• Maximum allowable discharge density near 

the riverbank: ρmax=0.1 mg/L.s (equivalent to 
8.64 kg/m/day/m2 

 
Figure 1 The illustration of a specific river section 

 
In case of dispersion coefficient (molecular and 

turbulent diffusion): α = 0 (m2/s) 
Calculation results of load capacity and distance x0 

according to the formulas (14),(15) and (13) are presented 
below (Teble 1): 

 
Table 1 The calculation results of load capacity and distance x0 

Total Load 
Capacity 
(kg/day) 

Load 
Capacity 

along river 
(kg/day) 

Upstream 
(kg/day) x0 (m) 

260076 190956 69120 73.35 
 
The distribution of concentration c along the river and 

the load along the river is shown in Table 2, and Figures 2, 
3 below: 

 
Table 2 The distribution of concentration c along the river and 

the load along the river with α= 0 (m2/s) 
x  

(m) 
c(x)  

(mg/l) 
ρρρρ(x) 

kg/m/day/m2 kg/m/day 
0 4 8.64 2592 

10 5.50 8.64 2592 
20 7.00 8.64 2592 
30 8.50 8.64 2592 
40 10.00 8.64 2592 
50 11.50 8.64 2592 
60 13.00 8.64 2592 

73.3 14.99 8.64 2592 
75 15 0.003 0.9 

100 15 0.003 0.9 
200 15 0.003 0.9 
300 15 0.003 0.9 
400 15 0.003 0.9 
500 15 0.003 0.9 
600 15 0.003 0.9 
700 15 0.003 0.9 
800 15 0.003 0.9 
900 15 0.003 0.9 

1000 15 0.003 0.9 
 

 
Figure 2 The distribution of concentration along the river 
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Figure 3 The distribution of load along the river 

 
In case of dispersion coefficient (molecular and 

turbulent diffusion): α= 40 (m2/s) 
Calculation results of load capacity and distance x0 

according to the formulas 26, 27, 25 are presented below 
(Table 3): 

 
Table 3 The calculation results of load capacity and distance x0 

Total Load 
Capacity 
(kg/day) 

Load 
Capacity 

along river 
(kg/day) 

Upstream 
(kg/day) 

x0 (m) 

388078 318958 69120 126 
 
The distribution of concentration c along the river and 

the load along the river is presented in Table 4, and Figures 
4, 5 below: 

Distribution of concentration c along river and load 
along river with = 40. 

 
Table 4 The distribution of concentration c along the river and 

the load along the river with α= 40 (m2/s) 
x 

(m) 
c(x) 

(mg/l) 
ρρρρ(x) 

kg/m/day/m2 kg/m/day 
0 4 8.64 2592 

10.182 5.32 8.64 2592 
20.365 6.61 8.64 2592 
30.547 7.85 8.64 2592 
40.730 9.04 8.64 2592 
50.912 10.16 8.64 2592 
61.095 11.21 8.64 2592 
70.004 12.06 8.64 2592 
80.187 12.93 8.64 2592 
90.369 13.69 8.64 2592 

100.552 14.29 8.64 2592 
110.734 14.73 8.64 2592 
120.916 14.97 8.64 2592 
126.008 15 8.64 2592 
127.000 15 0.003 0.9 

600 15 0.003 0.9 
700 15 0.003 0.9 
800 15 0.003 0.9 
900 15 0.003 0.9 

1000 15 0.003 0.9 

 
Figure 4 The distribution of concentration along the river 

 

 
Figure 5 The distribution of load along the river 

 
It can be seen that in the field = 40 (m2/s) the load 

carrying capacity of the river section increases to about 
128002 kg/day (about 49%) compared to the case of α=0, 
and the distance x0 increases to about 50 m. Thus, the 
influence of dispersion coefficient is very large on the LC 
of the river section and should be considered in the 
calculation. 

 
5 Conclusion 

This study successfully developed an analytical 
solution for optimizing the pollution load capacity of a 
river segment, addressing both theoretical and practical 
aspects of water quality management. The derived 
solutions for cases with and without dispersion effects 
provide a clear methodology for determining the maximum 
allowable pollutant discharge while adhering to 
environmental standards. 

The application to a specific river segment highlighted 
the significant impact of dispersion coefficients on the 
river's load capacity, with a 49% increase observed when 
dispersion was considered. These findings underscore the 
importance of incorporating dispersion processes in 
pollution load calculations to achieve accurate and 
sustainable results. 

Future research could extend this model to more 
complex river systems, including multi-dimensional flows 
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and dynamic boundary conditions. Additionally, 
integrating real-time monitoring data could enhance the 
model's predictive capabilities. This work serves as a 
valuable tool for policymakers and environmental 
engineers in designing effective pollution control 
strategies, ultimately contributing to the preservation of 
water resources for future generations. 
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